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The onset of instability in temporally modulated Taylor-Couette flow is considered. 
Critical Reynolds numbers have been found by computing Floquet exponents. We 
find that frequency modulation of the inner cylinder introduces a small de- 
stabilization, in agreement with the narrow-gap theory of Hall and some recent 
experiments of Ahlers. We review the previous computational literature on this 
problem, and find a number of contradictory results: the source of these discrepancies 
is examined, and a satisfactory resolution is achieved. Nonlinear axisymmetric 
calculations on the modulated problem have been done with an initial value code 
using a spectral method with collocation. The results are compared satisfactorily 
with Ahlers’ measurements. 

At low modulation frequency, a large destabilization has been observed in past 
experiments. We show that this cannot be explained on the basis of perfect 
bifurcation theory : an analysis of the modulated amplitude equation shows that 
very small imperfections can substantially affect the behaviour at low frequency by 
giving rise to  ‘transient ’ vortices at subcritical Reynolds number. We argue that 
these ‘transient ’ vortices are the source of the large destabilization seen in some 
experiments. Modelling the imperfections in the initial-value code provides additional 
confirmation of this effect. 

1. Introduction 
The stability of flows which vary periodically in time is a problem which 

is receiving increasing attention. This interest has a number of causes. It arises partly 
from the recognition that many flows in nature are driven by periodic forces, 
partly from the improved experimental techniques available in fluid dynamics, and 
partly from the general progress in the area of dynamical systems. This has lead to 
the investigation of the effect of time modulation on the parameters that control the 
onset of an instability. 

Rome of the major prototype problems of modulated hydrodynamics have been 
reviewed by Davis (1976) : parallel shear flow, BBnard convection and Taylor-Couette 
flow. In this paper we investigate the problem of modulated Taylor-Couette flow. 

Our concern is the motion of an incompressible fluid of density p and kinematic 
viscosity v which is contained in the gap between two concentric cylinders which 
rotate at assigned angular velocities. We make use of the following notation : R, and 
R, are the radii of the inner and outer cylinder, and a, and 52, are their respective 
angular velocities. The gap width is d = R,-R, and the radius ratio is 7 = R,/R,. 

We distinguish between a ‘steady’ and a ‘modulated’ Taylor-Couette flow. In  the 
‘steady ’ Taylor-Couette problem the velocities of the inner and the outer cylinders 
are kept constant: let us assume for simplicity that the outer cylinder is fixed 
(a, = 0) and that the inner cylinder rotates at angular velocity Q,. If Ql is small 
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enough then the motion of the fluid around the inner cylinder is purely azimuthal and 
it is called Couette flow. If 0, is larger than a critical velocity SZ,, then the Couette 
flow is unstable : a secondary flow onsets with non-zero values of the radial and axial 
velocity components; this new flow, called Taylor-vortex flow, is in the form of 
axisymmetric vortices stacked on top of each other in the axial direction. A similar 
transition from azimuthal Couette flow to Taylor-vortex flow holds in the more 
general case in which both 0, and 0, are not zero, although if the cylinders rotate 
in opposite directions a direct transition to  a non-axisymmetric state is possible. 
Further instabilities of the Taylor vortex flow at higher velocity and the onset of 
time-dependent non-axisymmetric flow are not our concern a t  this stage. 

In  modulated Taylor-Couette flow we address the question of what happens if the 
velocities of the inner and the outer cylinders are not constant but vary periodically 
in time at given frequency and amplitude. We consider a modulation of the form 

It is apparent that  by a proper choice of the many parameters in (1 -1) a great number 
of interesting flows can be produced. Riley & Laurence (1976) and Carmi & 
Tustaniwskyj (1981) investigated theoretically modulations both with zero mean 
velocities and with non-zero mean velocities. In  particular they studied the 
modulation of the inner cylinder around zero mean with fixed outer cylinder ; this 
case has an interesting limit when the outer cylinder is absent, which has been 
considered from both the theoretical and experimental point of view by Seminara & 
Hall (1976, 1977), and then by Park, Barenghi & Donnelly (1980) in an experiment 
in which they found spatial subharmonic bifurcations. What happens in the case 
described by (1.1) a t  large modulation amplitudes was studied by both Riley & 
Laurence (1976) and Carmi & Tustaniwskyj (1981), and more recently by Kuhlmann, 
Roth & Lucke (1989), who discovered subharmonic response when the flow becomes 
supercritical in both rotation directions during a cycle. 

In the present paper we want to concentrate our attention on simpler situations, 
in which the basic flow is a standard Couette flow, and the modulation is a 
perturbation superimposed on i t ;  our motivation is that some important questions 
about the effect of modulation at low frequency and low amplitude near the steady 
vortex flow threshold are not yet understood. 

The first case of modulated Taylor-Couette flow which we study is when the outer 
cylinder is fixed and the inner cylinder is modulated around a non-zero mean 

I Q,( t )  = Q,(i +el sin (wit)), 
a,@) = 0. 

We assume that the amplitude of the modulation is such that the inner cylinder 
always rotates in the same direction more or less rapidly, i.e. el < 1. Now if a, is 
sufficiently small, the flow is azimuthal and the inner cylinder i s  an oscillating 
boundary from which a damped viscous wave originates and penetrates into the fluid 
as far as a Stokes layer thickness 8, = (2v/01)i. If fi, is higher than a critical value 
Dl, a vortex flow onsets. The question which then naturally arises is whether the 
modulation makes the flow more or less stable to the onset of vortices than in the 
steady case. This leads to the introduction of the threshold shift parameter r = 
(~1,-01,)/0,,, and to the study of how the threshold shift varies as a function 
of modulation amplitude el and modulation frequency wl. I n  particular one expects 
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interesting things to happen at frequencies for which the Stokes layer has size 
comparable with the gap between the cylinders : a t  high frequency only a thin layer 
of fluid close to the inner cylinder is affected by the oscillatory motion on top of the 
average rotation a, and the modulation produces a less significant influence. 

A useful measure of the frequency of modulation is the parameter y1 = ( w l  d */2v); 
which is the gap width d divided by the Stokes-layer thickness 8,. From now on we 
shall use the symbol w1 to denote the angular frequency of modulation in 
dimensionless units, based on the viscous time d 2 / v ;  thus we have w1 = 2yi. 

The pioneering work done on the subject of modulated Taylor-Couette flow, which 
stimulated the whole field of modulated hydrodynamics, was the experiment of 
Donnelly: (Donnelly, Reif & Suhl 1962; Donnelly 1964). Donnelly found that, for 
given el and w,, the critical velocity a,, at which modulated vortex flow onsets is 
larger than the velocity SZ,, of the onset of steady Taylor vortices. In his definition 
of a,, it  was assumed that above fil, the vortices have amplitude with the 
dependence A 2  = fil-Dlc, where A is an axial or radial velocity component, in 
analogy to what happens in the steady Taylor-Couette problem. However, a t  
velocities less than a,, Donnelly observed vortices which appear and disappear 
during a cycle, which he called ‘transient vortices ’. 

Hall (1975) calculated the onset of modulated vortex flow in the case of narrow gap 
(7+ 1) in both the limits of high and low frequency. In  the low-frequency limit he 
used an expansion in both small modulation amplitude and small frequency of 
modulation. He discovered that the lowest correction to  the onset of vortices in the 
steady problem is negative and of the order e;, i.e. the modulation weakly 
destabilizes the flow. More precisely he found that the critical Taylor number of 
modulated vortex flow Ta, = 2@, R, d 3/v2 is a series of the form 

Ta ,  = Tao-208.6e:+ 1 .7e:w:+O(e~,e~w~) .  (1.3) 

Here Ta ,  = 3389.9 is the critical Taylor number for the onset of steady vortex flow 
in the narrow-gap limit and a = 3.1266 is the critical dimensionless wavenumber (the 
axial wavenumber in units of the gap width). Note that the series (1.3) has terms with 
alternating sign and i t  probably converges slowly ; in the same paper Hall also added 
that the next contribution in (1.3) is the term - 1300 .$. The nonlinear behaviour was 
also studied by Hall (1975, 1983) who derived a differential equation in time for the 
amplitude of the disturbance : this amplitude equation will be discussed in $3. 

Riley & Laurence (1976) developed a numerical code to study the stability of the 
viscous wave using Floquet theory and a Galerkin expansion, again in the narrow- 
gap limit. As mentioned above, these authors considered several choices of 
parameters in ( 1 . 1 ) .  In the case of modulation of the inner cylinder around non-zero 
mean, which is our concern, they confirmed Hall’s result that low-frequency 
modulation destabilizes the flow. 

The extension of the theory to the case of finite radius ratio was carried out by 
Carmi & Tustaniwskyj (1981) who developed a numerical implementation of Floquet 
theory and studied a variety of choices of parameters. For the case described by (1.2) 
they considered two values of the radius ratio, 7 = 0.957 and 7 = 0.693. A t  amplitude 
el = 0.5 for both values of 7 they found that the modulation has a strong 
destabilizing effect in the low-frequency limit. The authors claimed that the flow 
becomes unstable a t  low frequency as soon as the peak velocity during a cycle 
a,(l +el)  is equal to the velocity of the onset of steady vortices Q,,, in agreement 
with a similar experimental observation of Thompson (1969). Carmi & Tustaniwskyj 
also argued that in Riley & Laurence’s calculation there is an approximation which 
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is not justified in unsteady flows and that this is probably the origin of their mutual 
disagreemcnt. In  a following paper Tustaniwskyj & Carmi (1980) developed an 
energy stability theory and confirmed the work of Carmi & Tustaniwskyj (1981). 

Kuhlmann (1985) developed a model equation for modulated Taylor-Couette flow 
in the narrow-gap limit by mode truncation of the Navier-Stokes equations and the 
introduction of simpler modified boundary conditions. He found that the model was 
satisfactory for the case of steady Taylor flow ; however, in the case of modulation 
i t  predicted stabilization at  all frequencies instead of destabilization. It was found 
that mode truncation rather than the modified boundary conditions was rcsponsible 
and that the inclusion of more modes restored the destabilization. A similar model 
of mode truncation was also derived by Hsieh & Chen (1984) in the steady case and 
Iny Bhattacharjee, Banerjee & Kumar (1986) in the modulated case : the calculation 
of the latter produced destabilization a t  low frequency, in agreement with the theory 
of Hall, but disagreed with Hall a t  higher frequency by exhibiting stabilization. 

Walsh & Donnelly (1988~) performed experiments a t  different values of the radius 
ratio. At the lowest frequencies of modulation they found large negative threshold 
shifts, of the same order of magnitude as Carmi & Tustaniwskyj’s: for example at  
7 = 0.88, el = 0.5 and w1 = 0.5 they measured r x -28%. However, the shape of 
Carmi & Tustaniwskyj ’s stability boundary was not in agreement with Walsh & 
Donnelly’s : the former showed large destabilization over a wide range in frequency, 
while the latter presented small threshold shifts with a sudden increase of the 
destabilization only below a critical frequency, for example w1 < 4 at  el = 0.5 and 
7 = 0.88. 

G. Ahlers (1988, private communication) performed a series of experiments a t  7 = 
0.75 which showed only a small destabilization. For example a t  el = 0.5 and w1 = 4 
he found r = -3%) only, more in agreement with the theory of Hall than that of 
Carmi & Tustaniwskyj. Ahlers also did laser-Doppler measurements of a component 
of the flow velocity a t  a fixed point as a function of time and obtained characteristic 
n on - harmoni c profiles. 

While our work was in progress we received a preprint from Kuhlmann et al. 
In  this paper they developed both a finite-difference numerical simulation of 
the Navier-Stokes equations at  radius ratio 7 = 0.65 and an analytic Galerkin 
approximation with four modes. They found that the modulation weakly destabilizes 
the flow at low frequency, in agreement with Hall and in disagreement with Carmi 
& Tustaniwskyj. They also studied large-amplitude modulation, as mentioned 
above, and discussed the differences and the similarities between Taylor-Couette 
flow and BBnard convection when subjected to external periodic driving. 

We conclude from this summary that there is a disagreement in the literature 
about whether a low-frequency modulation produces a large destabilizing effect, r = 

O(el), or rather a small destabilizing effect, r = O(E:) .  In  particular, in support of the 
former claim there is the numerical work of Carmi & Tustaniwskyj (1981) with the 
successive work of Tustaniwskyj & Carmi (1980) and the experiments of Thompson 
(1969) and Walsh & Donnelly (1988a); in support of the latter claim there are the 
results of the different theories of Hall (1975), Riley & Laurence (1977) and 
Kuhlmann et al. (1988) together with the experiments of Ahlers (1988). 

In order to try to resolve the disagreement between these two claims we have 
developed both an initial-value code to study modulated Taylor-Couette flow and a 
linear Floquet theory to study the onset of vortices. These numerical tools are briefly 
described in $2.  Our findings about the onset of vortex flow, which we present and 
compare with the existing theories and experiments in $4, are that the modulation 
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produces only a small negative threshold shift, in agreement with the claim of weak 
destabilization. 

This does not explain, however, why so many investigations, including recent 
experimental work, have found large destabilization at low frequency. In  $3  we show 
that small imperfections in the apparatus have a large effect a t  low frequency, and 
we identify some physical mechanisms which could lead to suitable imperfections. 
These imperfections do not cause very significant effects in the steady problem, but 
thcy have important consequences in time-dependent flows close to threshold. We 
present evidence which suggests that the discrepancies in the literature are primarily 
due to imperfections. 

The effect of imperfections has been studied in the context of the convection of a 
horizontal layer of fluid confined by lateral walls. If the walls are not perfect 
insulators, which is the case in all experiments, then the bifurcation to the convective 
state is not perfect : there is a smooth transition from conduction to finite convective 
amplitude; see, for example, Daniels (1977) and Hall & Walton (1979). These authors 
found that the differential equation for the amplitude contains an extra constant 
forcing term due to the heat leaking through the lateral walls. 

Ahlers et al. (1981) and then Cross, Hohenberg & Lucke (1983) studied the effect 
of both a step and a linear ramp of the heat current on the onset of convection and 
were able to explain the experimental data by making use of a forcing term in the 
amplitude equation. These authors also included a stochastic force with Gaussian 
white noise into the model so as to  simulate mechanical vibrations, random motion 
and thermal noise. Finally Ahlers, Hohenberg & Lucke ( 1 9 8 5 ~ )  studied the case of 
modulated thermal convection : they used a truncation of the Boussinesq equations 
which led to a three-mode model ; the model is a generalization of the Lorenz model 
to the case of external modulation. They found that the imperfection, which is due 
to heat leaking through the lateral walls, leads to a time-dependent forcing term in 
the Lorenz equations, which can be solved numerically. This approach was used to 
make a quantitative analysis of experimental data both by Ahlers, Hohenberg & 
Lucke (1985b) and by Niemela & Donnelly (1987). 

I n  $ 3  we discuss imperfections in the modulated Taylor-Couette system by means 
of the amplitude equation (Hall 1975, 1983), modified by including a constant term. 
The amplitude equation with imperfections is also used in $4, alongside the 
numerical solutions of the Navier-Stokes equations, and quantitative comparison 
with experiments is presented. 

Until now we have discussed modulated Taylor-Couette flow described by 
assigning the angular velocities (1.2). There is another simple situation which we 
consider, for which again the basic flow is of the Couette type and the modulation is 
a perturbation on top of it. In  this second situation the inner cylinder rotates at 
constant angular velocity and the outer cylinder is modulated around zero mean: 

This case has been the subject of a recent experiment by Walsh & Donnelly (1988b). 
They rotated the inner cylinder at velocity al > a,,,, thus producing a steady-state 
vortex. They then discovered that the modulation of the outer cylinder around zero 
mean could stabilize the flow and return it to Couette azimuthal motion, making the 
vortices disappear. The interest in this problem arises from the fact that here the 
modulation increases the mean critical Reynolds number, whereas in the situation 
described by (1.2) the modulation is destabilizing ; moreover the change in critical 
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Reynolds number is much larger than in the more standard (1.2) case, so that it is 
easier to detect experimentally. In $4 we present the results of our implementation 
of Ploquet theory and compare them with this experiment. 

We have also considered the flow that develops once the critical velocity is 
exceeded. This is done in $4, where we present some results obtained by means of the 
initial-value code and compare them with the experiments. Finally $ 5  contains a 
discussion. 

2. The equations of motion 
The Navier-Stokes equations for axisymmetric incompressible flow are 

(2-1) 
au, ia(@,uc) 1 a a a2u+ ud 
~ - - --____ --r-u,+--- 
at r a( r , z )  rar  ar az2 r2 

where u,, ud and u, are the components of the velocity in cylindrical coordinates, 
~ is the stream function 

1 
u, = --- r a2 ’ 

and 2 is l / r  times the tangential component of the vorticity, so 

z= i a,$ i a i a $  
r2  az2 r ar r ar ’ 

The nonlinear terms of the form a(f, g ) / a ( r ,  z )  are defined as 

The boundary conditions at the lateral walls are 

u, = u, = 0 a t  r =  R,, r = R,, 

u,(r = R,) = 0,R,, u&r = R2) = 0 , R 2 .  

In the case in which both SZ, and 0, are constant we know that a t  small velocity the 
solution is the azimuthal Couette flow u = (O,u, , ,O)  where 

uc0(r)  = Ar +B/r,  (2.9) 

A = ( R ~ Q , - R ~ Q , ) / ( R ~ - R ~ ) ,  B = R~R~(Q,-SZ,)/(R~-R:).  (2.10) 

and A and B are determined by the boundary conditions 

More generally we consider the case in which 52, and 52, are assigned functions of time 
given by (1.1). Then all the quantities u+, Z and @ are functions of time too. It is 
convenient to replace the azimuthal velocity uc by 

(2.1 1) u&r, t )  = u,rJ(r, t )  + u(r ,  4, 
where ucO(r, t )  = A ( t )  r+B( t ) / r  is the instantaneous Couette flow which a t  each time 
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takes care of the boundary conditions (2.7) and (2.8). The boundary conditions for 
w are simply 

v(r  = R l , t )  = w(r = R,, t )  = 0. (2.12) 

The stream function satisfies 

We can introduce the dimensionless variables t + t v / d 2 ,  r + x = ( r - R l ) / d ,  z + Y = 
z/d,  and fields w+vd/v, Z + Z R , d 2 / v  and $+$ /vR2 .  The Reynolds numbers are 
defined as 

(2.14) 

and the assigned drives of the inner and the outer cylinders can be written as 

Re, = a, R ,  dlv, Re, = a, R, d / v  

Re,(t) =Rel{i+slsin(wlt)}, Re,(t) =Re,{~+s,sin(w,t)}. (2.15) 

Here w1 and w2 are the dimensionless frequencies of modulation; we also use the 
parameters y1 and ya defined by w1 = 27: and w2 = 2y:. 

We define the critical Reynolds number in the modulated case as Eel,, and the 
critical Reynolds number in the steady case as Re,,. 

To study the modulated Taylor-Couette flow we have developed an initial-value 
code which solves (2.1), (2.2), (2.5), (2.11), made dimensionless, subjected to the 
drive (2.15) and the boundary conditions 

v = @ = &,b/ax = 0 at x = 0, x = 1 .  (2.16) 

A detailed description of this numerical work, together with the tests it was 
subjected to and its properties of stability and convergence, will be published in 
another paper. Here it suffices to say that the code is based on a spectral method 
(Marcus 1984). We assume that the cylinders are infinitely long giving spatial 
periodicity in the axial direction. The axial dimensionless wavenumber is a = 2n/h, 
where h is the wavelength of the vortex cell pair in units of the gap width d. The 
unknown functions v, Z and are expanded over a double truncated series of Fourier 
functions axially and of modified Chebyshev polynomials T,* radially : 

(2.17) 

At each time the state of the flow is represented by a vector containing all the 
coefficients of these truncated series of $, v and Z .  The integration in time is done by 
means of a Crank-Nicholson implicit method for the linear terms in (2.1) and (2.2) ; an 
Adams-Bashforth method is used for the nonlinear terms. The algorithm has the 
form 

pxn+1 = O X n  +$At ( 3  Y" - Yn- l )  + Gn, 

where X" is the vector X formed by running together the dependent variables $mn, 

vmn and Z,, at time step n At. Y is a vector which depends nonlinearly on X, and Gn 
is a known vector a t  time n At. The truncation parameters M and N depend on the 
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Reynolds number, larger Re requiring largcrM and N (Jones 1985) ; typically N = 15, 
M = 6 and the number of time steps per cycle NT = 800 were used, although different 
values have been taken in diffcrent regions of the parameter space. The actual values 
of M ,  N ,  and NT used for each case are given in the figure captions. We have also 
developed a program to study the linear stability of the steady Couette flow: the 
eigenfunctions produced by this program can then be used as initial conditions of 
arbitrary amplitude for the initial-value code. Otherwise the starting condition can 
be provided by an initial guess or by making use of a pre-existing state of the flow. 

As we have mentioned in the previous section, there is a discrepancy in the 
literature about the onset of modulated vortices. The numerical work of Carmi & 
Tustaniwskyj (1981) predicted large negative threshold shifts in disagreement with 
other theories. To settle this discrepancy we have developed our own implementation 
of Floquet theory, which will be described in the other paper on numerical methods. 
Here we simply mention that the Ploquet theory is essentially a linear stability 
theory for an unperturbed state which is periodic in time : a number of orthonormal 
perturbations of the initial oscillating state are intcgrated over a cycle by a linearized 
version of the initial-value code which we have mentioned before. Thc eigenvalues of 
the linear mapping from the initial state into the final state determine the stability. 

3. The amplitude equation and the effect of imperfections 
The amplitude equation for modulated Taylor-Couette flow has been derived by 

Hall (1975, 1983). The amplitude of the axially periodic Fourier mode obeys a 
diffcrcntial equation of the form 

- = {p++sin(wt)}A- 
dA 
dt 

-A3,  

provided we are sufficiently close to critical Reynolds number. Herc t and w are the 
time and frequency, suitably scaled in the derivation. p is proportional to Re, -Rel,, 
where Zlc is thc critical Reynolds number for the modulated flow. As we see later, 
the critical Reynolds number is dependent on e and w ,  but only rather weakly: 
cktermining this dependence has been the main object of most of the experiments 
and theory mentioned in $ 1 .  The main object of the analysis of this section is to 
explain why many of the experiments have failed to reveal a coherent picture of the 
dependence of zIc on e and w ,  and why they are often in disagreement with the 
theoretical predictions of Hall (1976, 1983). We believe the reason for this 
disagreement is not that Hall's analysis is in error; indeed, as we shall show later, our 
numerical results confirm his analysis. Our view is that many of the onset 
experiments that have been performed are extremely sensitive to noise that makes 
the bifurcation imperfect : we can model this noise by adding an additional term to 
the amplitude equation (3.1), so that it becomes 

- = {,u++sin(wt))A-A3+c, 
dA 
dt 

where c is a small constant. Such a term was discussed by Schaeffer (1980) and Hall 
(1983) in the unmodulated Taylor-Couette problem, and has also been considered in 
the Rayleigh-Be'nard problem as summarized in § 1 .  A detailed derivation and a 
discussion of this equation has recently been discussed by TJettis (1986). 

There are a number of physical effects which can give rise to  imperfections, end 
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effects being the most frequently discussed (e.g. Schaeffer 1980; Benjamin 1978a, b) .  
However, many of the experiments we are discussing here were performed in long- 
aspect-ratio apparatus : for example, in Ahlers’ (1988, private communication) 
experiment, the aspect ratio r = h / d ,  where h is the length of the cylinders, takes the 
value r = 42.7. A detailed experimental study of end effects was performed by Walsh 
& Donnelly ( 1 9 8 8 ~ )  and Walsh (1988). At modulation amplitude el = 0.5 and 
frequency y1 z 1.0 they found the following threshold shifts: at 7 = 0.718 and 
F =  30,r=-19.9%;aty = 0 . 9 5 a n d r =  170 ,r=- l6 .52%;atq=0 .88andr=60 ,  
r = - 19.87 %. Bearing in mind that critical Reynolds numbers are rather insensitive 
to radius ratio q,  we see that the experimental results are also insensitive to  T over 
a wide range. I n  another test, Walsh (1988) found that the axial position of the 
detector made no sigriificant difference unless i t  was more than 75 YO of the distance 
from the middle of the cylinders to  an end. We conclude that end effects are probably 
not the most important source of imperfections leading to  the large change in 
threshold shifts seen in many experiments. Experimentalists try to  eliminate 
fluctuations in temperature along the cylinders, but nevertheless fluctuations of 
typical order lop3 K are usually present; these temperature variations give rise to 
convective motions which lead to non-zero c. Another source of imperfection arises 
if the cylinders are not absolutely straight : even extremely small variations in the 
radius of the cylinders of the order of lo-’ cm give a variation of the centrifugal 
acceleration on the sidewalls which leads to a pressure gradient along the sidewalls. 
The resulting motion renders the bifurcation imperfect. These imperfections can be 
expected to vary on a long timescale, so that it is reasonable to assume c is a 
constant : physical effects which would lead to a time-varying c may also be present : 
numerical investigations of these have been given by Ahlers et al. (1985 b) .  However, 
the assumption of constant c allows analytical progress to be made with (3.2). 

Before we can attack (3.2), we must first make a few remarks about the ‘perfect’ 
amplitude equation (3.1). We follow Hall’s (1975) treatment. The general solution of 
(3.1) can be written 

- 1 1  = -exp{-[cos(wt)-1]-2pt 2e 
A* A: w 

dx, (3.3) 

where A ,  is the initial value of A.  If p < 0 the first term grows exponentially, so that 
any initial disturbance tends to zero. If p is positive but small, 

(3.4) 

as t +  00, where I .  is the modified Bessel function of order zero (note that (3.4) is 
valid only if /I + e / ~ ) .  We conclude from this that p = 0 corresponds to  the critical 
Reynolds number, and that the amplitude of the motion grows as pi, following the 
usual Landau law. 

As we move through a period of the modulation cycle, the quantity p+esin ( w t ) ,  
which is proportional to Re,( 1 +el sin ( w t ) )  -Re,, and which we may think of as the 
instantaneous growth rate, is negative for half the cycle and positive for half 
the cycle at  marginal stability p = 0. If e / w  is fairly large, then (3.4) predicts that the 
amplitude takes the form of pulses, the ratio of maximum to minimum amplitude 
being exp ( 2 e / w ) .  This behaviour is illustrated in figure 1 (a) : note that in the period 

pi exp { - e/w cos ( ~ 7 ) )  

v o  (2e/w) I$ 
A -  
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FIGURE 1 (a). For caption see facing page. 

t ,  < t < t, the amplitude becomes exponentially small. In  practice this is unrealistic, 
because the weak imperfections mentioned above always drive low-amplitude 
motions. Furthermore, the effects of the imperfections are not limited to the region 
t, < t < t, but significantly alter the behaviour a t  large amplitude in the t, < t < t, 
range. This idea, and its consequences, have been explored in the context of B6nard 
convection by Finucane & Kelly (1976). They remarked that even if a particular 
small disturbance achieves no net growth over a cycle, it is still possible for it to have 
grown to observable size during the supercritical part of the cycle and then decayed 
to  zero. So the natural occurrence of many disturbances will give rise to  observable 



Modulated Taylor-Couette flow 

(b) 

P+E 

0 

p +€sin wi  

P 

ll--E 

E 

W 
-pt + -cos wr 

137 

i4 16 !a i, 
i 

FIQURE 1. (a) ( i )  Plot of y+csin (wt )  vs. t for y = 0.4, E = 4 and w = 0.7. (ii) Sketch of the 
corresponding amplitude A(t )  from (3.1). (b)  Plot of y+esin (wt)  vs. t for p = - 1, E = 2 and w = 1. 
( e )  Plot of -,&+(C/O) cos (wt)  vs. t for the same p, E and w as ( b ) .  

motion over part of each cycle. We are therefore led to consider (3.2) especially in 
the limit when c and o are small. 

A further motivation for studying this problem comes from the experiments. Both 
Donnelly (1964) and Thompson (1969) reported that a t  low frequency vortices occur 
if the maximum Reynolds number Z,(l +el)  during a cycle exceeds the critical 
Reynolds number Re,, for the onset of steady vortices. This remark was also made 
by Carmi & Tustaniwskyj (1981). On simple physical grounds this seems quite 
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reasonable, because a t  low frequency when we are near t = t ,  we have a long period 
when the Reynolds number is above Re,, and we would expect to see vortices as we 
do in the stcady problem. Indeed such vortices arc observed in experiments and arc 
called 'transient vortices ' : the name derives from the fact that  they are only seen at 
the top of the cycle, not because they disappear as t --f CO. Although this behaviour 
seems reasonable, we should emphasize that it is not what is predict,ed by the perfect 
bifurcation - theory. This predicts that  the critical Reynolds number in the modulated 
case, H e l c  is slightly below that for the steady problem Re,,, by an amount of order 
2 ;  this change in critical Reynolds number is usually much less than e 1 E , ,  thc 
amplitude variation of the instantaneous Reynolds number. The transient vortices 
are therefore being observed in a regime in which &, is well below both Relc and Re,, ; 
the typical situation is sketched in figure 1 (b ) .  This corresponds to  a regime in which 
,u < 0 < p+e in (3.1),  and as we have seen perfect bifurcation theory predicts that all 
disturbances decay to zero, in contradiction to the fact that the 'transient ' vortices. 
despite their name, pcrsist as t + GO. 

We believe that the resolution of this apparent paradox lies in the effect of 
imperfections in the apparatus. These provide the initial perturbation from which 
the 'transient ' vortices can grow. The reason why there arc not transient vortices in 
the perfect bifurcation theory case when p < 0 < y + 6 ,  even a t  low frequency, is that 
the long phase of exponential growth is followed by an even longer phase of 
exponential decay. This drives the amplitude down to  extremely small values which 
are not physically meaningful. A t  low frequencies, therefore, we must replace (3.1) 
by (3.2) which provides a more realistic model. As we see below, the criterion for c 
to be significant at, low frequency is that c should be of order K-'wa exp ( - A / o )  or 
larger, where K and A are numbers of order unity. Because of the exponential factor, 
the frcyuency does not have to  be very low for even a very small c to achieve this 
magnitude, and t,he evidence suggests that in many of the experiments c has been 
comparable with K-lwtexp ( - d / w ) .  

It is quite instructive (and very straightforward) to integrate (3.1) numerically 
with y < 0 and w small, using a high-accuracy integration routine and double 
precision, so that machine accuracy is around Parameter values of y = - 1 ,  
E = 2 and w = 0.1 are suitable. Despite the fact that we have shown that the analytic 
solution decays to zero, the numerical solution does not. During the decay phase it 
drops to around lo-'', at which point rounding errors prevent it from falling cven 
lower; during the next growth phase the solution gets back to an O(1) value before 
dropping down again. In  this numerical experiment the imperfection is provided by 
rounding error and is of course minute compared with the imperfections in any 
physical apparatus : nevertheless, these tiny imperfections are sufficient to completely 
change the O(1) behaviour of the system at low frequency. 

We now investigate the asymptotic behaviour of (3.2) in the limit in which w and 
c are small. There are a number of different regimes. If ,u+e < 0 no amplification 
occurs and disturbances remain small. If p - E  > 0, the instantaneous growth rate is 
always positive and the imperfection c will not affect the solut,ion significant,ly unless 
it is O(1). The case of interest is when 

p - e  < 0 and p + ~  > 0; wand c are small, and y , ~  are O(1).  (3.5) 

In general the periodic solution of (3.2) we are seeking is composed of two regions 
which must be asymptotically matched. I n  the neighbourhood oft ,  (see figure l b ) ,  
the solution has undergone the exponential growth phase, and in general A will have 
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reached an O(1) value where it is governed by (Xi ) ,  c being then negligible. The 
solution (3.3) is then applicable and we can write 

A2 w I[ { 2s w I 1 
- = exp { 2 cos (wt )  - 2pt K ,  exp 2pt, -- cos (wt,) 

+[,2exp{2px-;cos(wz) 2s 

where K,  is a constant to be determined by matching. 

to repeat, so it has the form 
After a full cycle of length T = 2 x / w ,  in the neighbourhood oft,, the solution has 

I 2s 
= exp { 2 cos (wt) - 2put K ,  exp 2p(t3 + T) - - cos (wtg) 

A2 0 I[ { w 

1 - 

+ ~ 5 2 e ~ p { 2 p ~ - ~ c o s ( w x )  2s 

Between these two regions where A is O(1) there is a region where A is small, A3 is 
negligible and c is important. In the neighbourhood oft,, the governing equation is 

-= {Esin(wt)+p}A+c, (3.8) 
dA 
dt 

with solution 

(3.9) 
I E 

A = K ,  exp pt - - cos (wt)  + c exp pt - - cos (wt )  } /13 exp { - px + cos (wx)  dz. 

The quantity inside the exponential in the integral in (3.9) plays a crucial role in 
understanding the matching procedure, so it sketched in figure 1 (c). Provided (3.5) 
holds. it has successive maxima and minima; the case drawn is for p < 0:  if p > 0 
successive maxima decline rather than rise. We now determine the constants K ,  and 
K ,  by matching (3.9) to (3.6) and (3.7).  The quantity inside the integral in (3.6) is the 
exponential of -2  times the quantity plotted in figure 1 (c) .  Once t goes past t, into 
the exponential decline phase which follows t,, this integral is dominated by the 
contribution near t,. The method of steepest descent can be used to evaluate the 
integral : 

i :  I { :  

I 2  exp { 2pz - 0 cos (wx) dx = 2 exp 2p(t3 + 7) 
2s I { 

-^[ cos (at,) cos (w) - sin (wt,) sin (w7) d7. 
w I1 

Expanding in powers of wr (w is small), and using p++sin (wt,) = 0, 

~ , 2 e x p { 2 p x - ~ c o s ( w x )  2 E  2 E  
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So, from (3.6), the behaviour in the exponential decline phase following t ,  is 
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I E 

w 
- / L ~ ~ + - C O S ( W ~ , )  . (3.10) 

4R 

This has to agree with the behaviour of (3.9) in this region. Now in this region the 
c-term is growing from a small value; i t  is then K, that  matches the behaviour (3.10). 
so 

1 E - pt, + - cos (Wt, )  . 47c ]i]-iexp{ 
K2 = [.I+[ -€wCOS(Wt, )  w 

(3.11) 

As t increases past t,, the c-term in (3.9) increases, but the quantity inside the integral 
attains a maximum a t  t = t, and so the regime t > t ,  corresponds to exponential 
growth. We again use steepest descent to evaluate the integral asymptotically just 
as we did to evaluate (3.10). We obtain 

E 2R 
A w exp pt - - cos (wt ) }  b2 + c exp { -pi5 + - cos (wt,)} [ I] { :  w €6J cos (Wt,) 

here: also from (3.7) in the regime just beyond t,, 

I & 

w 
- p ( t , + T ) + -  cos(wt,) , 

and matching gives 

(3.12) 

Eliminating K ,  from (3.11) and (3.12) and defining 

(3.13) 

I E { 0 
A ,  = cKw-iexp p ( t , - t l ) - - [ ~ ~ ~ ( w t 3 ) - c o s ( w t l ) ]  = cKw-iexp(A/w), (3.14) 

where 

is the distance marked in figure 1 (c), we obtain 

A/@ = [2p{+7c + sin-' ( p / ~ ) )  + 2(e2 -p2)k]/w 

(3.15) 

which is the matching equation. Note that K,, K, A ,  and T are all positive 
quantities, and that A ,  is the term proportional to c, the imperfection. We now 
break the discussion down into various cases: 

(i) p < 0, i.e. the Reynolds number is below the critical value for a perfect 
bifurcation. No solution is possible unless A,,, is significant, i.e. the imperfection is 
significant. The second term is negligible compared to  the third, so 

(3.16) 
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and (3.6) becomes 
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2e w I 1 2e 
7 = exp { - cos (wt )  - 2ptj [ L- exp { 2pt3 -- cos (wt,) 
A w A: 

Provided t, < t < t ,  we may approximate the integral, since from figure 1 (c) it is 
dominated by the behaviour at t (there is no internal maximum in this case, the 
integrand increases monotonically). We have 

1 2e 28 x 2 /:-t 2 exp { 2p(7 + t )  - - cos (w7)  cos (wt) +-sin (WT)  sin (wt) d7 
w w 

exp { - 2p7 - 2 ~ 7  sin (wt ) }  d7 

- exp { 2pt - 2e/w cos (wt )} - 
p + 6 sin (ot) 

So (3.17) becomes 

t, < t < t,. 1 
p+esin(wt)’ 

2p(t3 - t )  + cos (ot) - cos (wt,) + 
(3.18) 

w 11 1 1  _ -  
A2 A ,  

t, < t < t,. 1 
p+esin(wt)’ 

2p(t3 - t )  + cos (ot) - cos (wt,) + 
(3.18) 

w 11 1 1  _ -  
A2 A ,  

The two terms on the right-hand side of (3.18) can be easily interpreted : if the second 
term is dominant A x (p+esin (wt)):, which is the ‘quasi-static’ local equilibration 
value, i.e. the value A has if dA/dt is neglected in (3.1). The first term contains the 
noise and determines how long it takes before local equilibration is achieved : if c is 
very small so is A,, and the longer it takes before local equilibration is achieved ; 
indeed, if 

A , < l  (3.19) 

local equilibration is never achieved, and the solution never gets to  A - O(1). A ,  
then dominates the maximum value that A achieves. Because of the exp ( d / w )  factor 
in (3.14), the value of c has to be extremely small a t  low frequency for A not to reach 
an O( 1) value. This enables us to give a criterion for whether c is large enough for O( 1) 
transient vortices to occur: if 

c 4 c- = wt exp ( - d / w ) / ~  (3.20) 

(c-  because this is the p < 0 criterion), then the imperfection is too small for 0(1) 
vortices to occur, and in experiments the effects of the imperfection will not be 
observed. If c z c- or larger, O(1) transient vortices will be seen. 

(ii) p > 0, i.e. the Reynolds number is above the critical value of a perfect 
bifurcation. Exp (pT) is now large so K ,  is small in (3.15), so K ,  is small compared to  
(2K2/w)i. Therefore 

(3.21) 
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The criterion for imperfection to be negligible in this ,u > 0 case is 
A ,  4 exp (,uT)/(2K2/w):, which is equivalent to  

04 

$& c 4 c, = -exp (pT- A / @ ) .  (3.22) 

If this criherion is violated, A,,, is significant and its effect is to  reduce K,. Since, by 
a similar argument to that used to  obtain (3.18), 

= K ,  exp 2p(t, - t )  + - cos (wt )  - cos (wt,) t ,  < t < t,, 1 
p++sin ( w t ) ’  

(3.23) 

the effect of adding the noise is to make A achieve ‘local equilibration’ earlier in the 
cycle. Numerical integration of (3.2) confirms t l i s  effect : it is discussed in relation to 
the experiments in $4. 

{ 26[ w I1 1 
A 

+ 

We summarize the most important findings of the analysis: 
(i) If p < 0 and c $ c- then the qmplitude A never reaches O( l ) ,  but only achieves 

a maximum of cKw-rexp ( d / w ) .  
(ii) If p < 0 and c x c- then A reaches local equilibration during the cycle 

(transient vortices). The larger c, the earlier local equilibration is reached; if c is 
relatively small, local equilibration is only achieved near t , ,  but if c is much larger 
than c- local equilibration holds almost from t ,  to  t,. 

(iii) If p > 0 then if c 4 c+ noise is unimportant ; if c is comparable with c+ the first 
effect of the noise is to make the growth phase of A occus earlier in the cycle. 

4. The results and comparison with experiments 

is modulated around non-zero mean, 
We first look at the case in which the outer cylinder is fixed and the inner cylinder 

Re,(t) = Re,(i +el sin (w,  t ) ) ,  

Re,(t) = 0. 

The first question that we consider is the Reynolds number Relc for the onset of 
vortices in the modulated case at given el and wl. If we define Relo as the Reynolds 
number for the onset of vortices in the steady-state situation, we want to know 
whether the threshold shift r = ( ~ , , - R e , , ) / R e , ,  is big and negative, i.e. the 
modulation strongly destabilizes the flow, as claimed by Carmi & Tustaniwskyj 
(1981), or rather r is small and negative, i.e. the modulation weakly destabilizes the 
flow, as claimed by Hall (1975). 

I n  figure 2 we compare our numerical calculations of Floquet exponents with those 
of Carmi & Tustaniwskyj by plotting r as a function of y1 a t  el = 0.5 and 7 = 0.6925. 
One can see that there is disagreement over the order of magnitude: we had to  
multiply our threshold shifts by 10 to make them visible on the same graph together 
with the results of Carmi & Tustaniwskyj. For example at their lowest frequency 
y1 = 1 we find r = -0.8 YO against their r = - 30.6 YO. The source of this disagreement 
must be numerical. At first we suspected that Carmi & Tustaniwskyj used too few 
Galerkin modes (typically only 3 or 4) : we therefore investigated the effect of severe 
mode truncation on our collocation scheme, by reducing the number of polynomials 
used. This failed to reproducc their large threshold shifts : the results were consistent 
with our high-resolution runs until the truncation was  reduced to a very small 
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FIGURE 2. Comparison with Carmi & Tustaniwskyj (1981). Plot of threshold shifts 
100(Re,,-Rel,)/Re,, US.  y1 at g = 0.6925 and el = 0.5 with outer cylinder fixed: circles, data of 
Carmi & Tustaniwskyj ; solid line, our results multiplied by 10. We used a = 3.13, N = 15, NT = 800. 

A t  y1 = 10 Steps per cycle Zl, 
1000 78.63 
500 78.63 
100 78.64 
60 78.67 
30 78.77 

At y, = 1 1600 78.02 
800 78.06 
100 64.79 
60 42.06 
30 23.90 

TABLE 1 .  Critical Reynolds numbers El, at g = 0.6925, el = 0.5, a = 3.13 as a function of time 
step. We use N = 15 Chebyshev polynomials. 

number of polynomials. Finally we discovered what we believe to be the true source 
of the disagreement: the time step used in the integrations of their Galerkin 
truncations. After the introduction of the scaled time T = w,t,  thcy claimed a four- 
digit precision for the stability boundary with a time step AT = 2x/30.  We therefore 
examined the effect of varying the time step in our numerical code. Some results are 
given in table 1, in which we compute a critical Reynolds number at two different 
frequencies. At high modulation frequency (yl = 10) the time step is not very critical 
and the value used by Carmi & Tustaniwskyj gives reasonable results. At low 
frequency (yl = 1 )  the situation is completely different, and even at 100 st)eps per 
cycle a substantial reduction in critical Reynolds number is found. In order to 
eliminate this bogus threshold change over 500 steps per cycle are needed. We 
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FIGURE 3. Comparison with Hall (1975). Plot of threshold shifts 100(~,,--Re,,)/Re,, us. 6,  at = 

0.999 and w1 = 3.49. The dashed line is our result with 01 = 3.1266, N =  15 andN, = 800: curve (a)  
is Hall’s equation (1.3) ; curve (6) is Hall’s equation (1.3) modified by adding the next-order term 
- 13004. 
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FIGURE 4(a) .  For caption see facing page. 
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FIGURE 4. Comparison with the experiment of Ahlers (1988, privatecommunication) at q = 0.75 
and (a)  o1 = 4, (6) w1 = 6, (c) o1 = 8. Plot of thresholds shifts 100(Rel,-Re,,)/Rel, ws: e l :  solid 
curve, our calculations with a = 3.13, N = 15, N, = 800; bars, experiment. 

therefore conjecture that Carmi & Tustaniwskyj decided on their time step on the 
basis of tests a t  fairly high frequency, and were therefore misled by their results a t  
low frequency. Although in principle numerical tests should be performed in all 
parameter regimes in computational work, in practice this is not always feasible. The 
effect arises because at low frequency the amplitude falls to very low values during 
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the cycle, as mentioned in the previous section. With too large a time step the 
numerical solution ‘jumps ’ across this part of the cycle too fast, and fails to compute 
the very small velocities sufficiently accurately. Having too large a time step 
introduces a numerical imperfection into the system which produces a broadly 
similar effect to a physical imperfection. 

In  figure 3 we compare our numerical results with the narrow-gap theory of Hall 
(1975). The dashed curve gives our computed threshold shifts at w1 = 3.49 and 7 = 
0.999 as a function of el. Hall’s findings are expressed by (1.3), which he presented 
in his paper over the range 0 < w1 < 6. To obtain r from (1.3) we transform Hall’s 
critical Taylor number Tu, into a Reynolds number at 7 = 0.999 ; Ta ,  is obtained from 
Re,, = 1302.008 found by our linear stability program at the same radius ratio : the 
result is curve (a )  in figure 3. I n  his 1975 paper Hall remarked that the next term in 
the series (1.3) is - 1300 E: .  We add this term to (1.3) to recompute r and produce the 
solid curve ( b )  in figure 3. Our results fall in between the two curves predicted by 
Hall’s theory. 

In  the case (4.1) we always found destabilization, in contradiction to the very 
severely truncated Kuhlmann (1985) model; no sign of the stabilization a t  high 
frequency found by the (again severely truncated) Bhattarcharjee et al. (1986) model 
emerged from our calculations. We were able to obtain stabilization for some very 
severe truncations of our expansion, but this behaviour never persisted when more 
modes were added. We note that the more recent Kuhlmann at al. (1988) model with 
more modes added predicts destabilization. Since the destabilization is such a small 
effect, it is perhaps not surprising that very severe truncations are not adequate to 
investigate it. 

We conclude therefore that our findings are in disagreement with those of Carmi 
CY: Tustaniwskyj but they agree with the prediction of weak destabilization of Hall, 
which has been recently confirmed also by Kuhlmann et al. (1988) by a finite- 
difference approach. The results of our theory are also in agreement with the 
experiments of Ahlers performed at finite radius ratio 7 = 0.75 with d = 0.63 em. 
Figures 4 ( a ) ,  4 ( b )  and 4 ( c )  show our computed threshold shifts and Ahlers’ 
experimental data a t  frequencies w1 = 4, 6 and 9 respectively. The agreement is 
reasonable, especially when we consider that  the small value of r makes its 
determination a difficult experiment, and adds to the evidence that the modulation 
of the inner cylinder produces an r = O ( E ~ )  destabilization. 

Having reached this first conclusion we still have to explain why a number of 
experimental investigations such as those of Thompson (1969) and Walsh & 
Donnelly ( 1 9 8 8 ~ )  found a larger r = O(e,) destabilization. In 53 we have argued that 
it is the imperfections of the system that are responsible for this effect and we have 
developed a theory which makes use of the amplitude equation to take the 
imperfections into account. To make further quantitative progress we need now to 
learn how to connect the amplitude equation to the experimental measurements and 
the numerical calculations. 

To do this we have to identify the quantities p, E ,  w ,  A and c, which appear in (3.2). 
We can set w to be the usual dimensionless frequency w1 defined earlier. At small 
amplitude in the stcady-state case ,u is simply the growth rate (r. By using the linear 
stability program we can compute the growth rate at a particular value of 7 and a, 
the axial wavenumber. Since ,u is proportional to (Re,-%&,) near the critical, we 
need to compute d(r/dRe at Rel = Rel,. For comparison with experimental data we 
take a = 3.13, close to the first mode to become unstable by steadily rotating linear 
theory, since there is experimental evidence that the wavenumber does not change 
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significanbly from this value in the modulated case (Ahlers 1988, private 
communication). As an example, at Ah1e.r~’ values = 0.75 and a = 3.13, da/dRe = 
0.31 at Re, =Re,,  = 85.7766 was found by our linear stability program, in our 
dimensionless units. p will actually be weakly dependent on o, because the growth 
rate will not be exactly the same in the oscillatory case as in the steady case, but we 
ignore this small effect and choose p = (Re, -Re,,) da /d  Re with da/d Re evaluated 
near Re,,. We define t: to be consistent with the definition of p, so we set E = 

(dn/d Re)%, el, where again the derivative is evaluated for the steady case at Re,,. 
Now we have to connect the amplitude A to the value of a velocity component, u, for 
example. Let A = ku,. We then use the initial-value code with a steady rotation to 
evaluate u, at a desired point for an appropriate value of Re,. Since in the steady case 
the amplitude equation gives A = pi we determine k by setting k = $/u,. Since the 
- numerical code gives u, cc (Re, -E,,)i sufficiently close to critical, the exact value of 
Re, at which k is determined is not especially important. 

The appropriate value of c is harder to estimate as we can only speculate on the 
most important sources of imperfection. If we assume that lateral variations of 
temperature of the order of AT = K are present on the sidewalls, as estimated 
by Heinrichs et al. (1988), we estimate that’ 

where di. is the expansion coefficient and g the acceleration due to  gravity; using our 
dimensionless units for u, and t 

x c. 
dA gEATkd3 
dt n3v2 
-- ‘v (4.3) 

Taking a = 0.0002, v = 0.01 cm2 s-l for water at 20 “C, and d = 0.63 cm, k x 0.5 (see 
below) we obtain 

c x 8 AT x lop2. (4.4) 

In practice we believe that c is likely to  be less than this for the following reason : 
in order to be properly represented as a c-term in the amplitude equation the 
imperfection has to have the same spatial structure as the Taylor vortices. In 
particular it has to have the same spatial periodicity of a = 3.13. In  practice it is 
likely that the dominant axial wavelength of t,hermal imperfections will be much 
longer than this, of order the total length of the apparatus. The component of 
thermal fluctuation wit,h t,he resonant wavelength is likely to be substantially less, 
making c correspondingly smaller. 

Another source of imperfection is variation of the radius of the cylinders along 
their length. Heinrichs et al. estimate a possible variation A1 x cm. Since a 
variat,ion in radius gives a fluctuation in the centrifugal acceleration along the length 
of the cylinders, a pressure gradient, along the cylinders is set up: 

so 

which leads to 

l d p  Q2RA1 
x- _ _  

pdz d 

n3v2 au, Q2R n A1 ~- - 
d 3 i 3 t N  d ’ 

(4.5) 

x c. 
dA Q2RkAld2 
dt n*v2 
- N  N 
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Again taking values appropriate to Ahlers’ experiment, SZ w 0.5 s-l, R x 2.5 cm 

(4.7) 
gives 

c x 120AZ w 10-l. 

For the same reason as before the effective value of c will be considerably less than 
this : there is no reason to suppose that variations in radius will have the same axial 
wavelength as the Taylor vortices. 

There are, of course, other possible sources of imperfections such as end effects and 
the effect of density variations induced by the flow visualization material, often 
Kalliroscope flakes. The latter problem has been investigated by Dominguez-Lerma, 
Ahlers & Cannell (1985) : they discovered that if the Couette apparatus is mounted 
vertically, the Taylor-vortex flow has vortex pairs of variable width, due to a non- 
uniform distribution of Kalliroscope flakes. This effect disappears if the apparatus is 
mounted horizontally, and Ahlers’ (1988, private communication) experiments were 
performed on a horizontal apparatus. However, it is also found that there is a 
tendency for Kalliroscope flakes to drift towards the cores of the Taylor vortices. 
This effect may be particularly important because the density fluctuation has the 
same spatial periodicity as the vortices themselves. 

We can estimate the effective value of c in the data of Walsh & Donnelly ( 1 9 8 8 ~ )  
for modulation of the inner cylinder a t  radius ratio 7 = 0.88 and el = 0.5 provided 
certain assumptions are made. Note that Walsh & Donnelly used Kalliroscope flow 
visualization and performed their experiments a t  frequencies as low as w1 = 0.48, so 
we expect their experiment to be more susceptible to the effects of the imperfections 
than Ahlers’ laser-Doppler measurements a t  w, = 4. In  fact Walsh & Donnelly found 
a large drop in critical Reynolds number a t  low frequency which we interpret in the 
following way. The flow was actually below the critical Reynolds number, but the 
imperfection was amplified in the way described in $3, so the vortices found at  low 
frequency are transient vortices in the same sense described in $3.  We assume that 
the threshold amplitude that the experiment could detect was fixed at  A = 0.2, 
which corresponds to the amplitude achieved in a steady-state experiment a t  a 
Reynolds number of about 0.1 above critical for this radius ratio (we assume that the 
axial wavenumber is fixed a t  3.13). We define Re,, to be the critical value a t  which 
the maximum amplitude of the transient vortices is A = 0.2. We further assume 
that the imperfection c is fixed a t  a value 0.001, which is reasonable in view of the 
previous estimates (4.4) and (4.7). Since the value of A = 0.2 is sufficiently small for 
us to be in the small-amplitude regime of $3,  we can use (3.14) to give an estimate 
of the maximum amplitude, so we set 

(4.8) 
In  the experiment el = 0.5, Re,, = 120.5 and dcr/dRe = 0.22 at Rel = Elc w Re,,, so 
c = 13.3. Then (4.8) becomes a relation between ,u - and w which we can connect to a 
relation between El, and w using ,u = 0.22(%,, - Re,,). In  principle Relc should be 
computed using our Floquet program a t  different values of w1 ; howcver, since the 
theoretical threshold shifts are very small on the scale in which we are interested, it 
is sufficient to approximate El, w Re,,. The solid curve of figurc 5 gives the Re,,* 
relation, and the circles the data of Walsh & Donnelly ( 1 9 8 8 ~ ) .  The horizontal line 
is the curve for the onset of instability which we take as El, w 120. The broken line 
is derived by direct numerical integration of the amplitude equation by fitting ,u so 
that A ,  = 0.2 at a given wl: it overlaps the solid line everywhere but in the region 
Re, x Rel,, thus showing that the asymptotic solution (represented by the solid line) 
is a good approximation. From the fact that the solid (or broken) curve and the 

A ,  = 0.2 = 0.001 Kwdexp ( d / w ) .  
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- FIGURE 5 .  Effect of the imperfection in Walsh & Donnelly's (1988~)  experiment. Plot of the critical 
Re,, vs. y, a t  7 = 0.88 and E, = 0.5: circles, experimental data;  solid curve, computation of c = 
0.001 imperfection by using equation (4.8). Broken curve, the same as the solid line but the 
amplitude equation was integrated numerically. 

circles lie fairly close together, we infer that c = 0.001 is a reasonable estimate of the 
imperfection level. In  view of the estimates (4.4) and (4.7), it is rather remarkable 
that the experimentalists have managed to keep the imperfection to so low a level: 
however, i t  is in the nature of the problem that the only effect of reducing the amount 
of the imperfection would be to shift the shoulder of the solid curve in figure 5 further 
to the left. Also, because of the exponential dependence on w ,  a very large reduction 
in the imperfection c results in only a modest shift of the shoulder to the left. 

It is difficult to incorporate imperfections such as thermal gradients into the 
initial-value code directly, as the resulting equations are considerably harder to 
solve. The main effect of such an imperfection will be to generate a source term of 
potential vorticity 2 ( l / r  times the azimuthal vorticity). This will also be the main 
effect of an axisymmetric geometrical imperfection of the inner cylinder wall. It is 
therefore reasonable to model the imperfection by adding tt source of potential 
vorticity to  the right-hand side of (2.2). Since we do not know the precise form of the 
imperfection, we adopt two simple models for the vorticity source. 

In  the first model we assume that the source of vorticity has the form aZ/at = 
csinac, so that only the first Fourier comonent is excited, and the source is uniform 
across the gap. In  the second model we assume that the vorticity is concentrated near 
the inner cylinder (to represent, for example, a geometrical distortion), so that the 
no-slip boundary condition is changed to ay?/ax = - 0 . 5 ~  Atq( 1 + 7) sin a6. This choice 
implies that the r-averaged potential vorticity, JR",'Zr dr, is the same in both models 
if c is the same. Figures 6 ( a )  and 6 ( b )  show that in both cases we can produce a 
Taylor-vortex flow steadily oscillating a t  low frequency a t  Reynolds number 
Re, < Re,, i.e. a 'transient ' vortex. Without the source of vorticity, on the contrary, 
we find the expected result that any initial disturbance decays to zero, since then the 
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FIGURE 6. (a) Steadily oscillating Taylor-vortex flow at 7 = 0.88, a = 3.13, %, = 100, el = 0.5, 
y1 = 0.79: plot of ur(r = 0.5,c = 0). The source of potential vorticity in equation (2.2) is 
- 10-3sina6. Note that Re,, = 120.5. We used N = 15, M = 4, NT = 800. ( 6 )  As (a) ,  but the vorticity 
source is at the inner cylinder wall, so that ?@/ax = 0.5 x 10-3Atq( l +7) sinac is the boundary 
condition. 

initial-value code describes a perfect bifurcation scenario. The rather similar 
behaviour for the two rather different vorticity distributions supports the view that 
the observed behaviour may not be too dependent on the exact nature of the 
imperfection. We now used the first of our two models to study the frequency 
dependence of oscillations of amplitude = 0.5, to compare with the amplitude 
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equation model. At wavenumber a = 3.13 and radius ratio = 0.88 the critical 
steady-state Reynolds number is 120.5. With a source of vorticity of strength 
we obtain an oscillating Taylor-vortex flow at Re, = 100, as in figure 6. We found 
that u,(x = 0.5, c = 0) reached a peak value of 0.414 x during the cycle with 
w1 = 2. A t  higher frequency, w1 = 4, we obtained u, = 0.262 x a much lower 
value as expected from the $ 3  discussion. We introduce again the quantities used in 
the analysis of the amplitude equation : a t  Re, = 100 we have 

d a  da - d a  - 
p = -(Re, -He,,) = -4.346, -- - 0.212, 

d Re, dRe d Re, 
E = - Re,€, = 10.6, 

A = 3.355. 

In $3  we concluded that when y < 0 and the imperfections are such that the vortices 
do not reach O( 1) during the cycle then the peak velocity is proportional to c and has 
frequency dependence 02 exp ( A / @ , ) .  For w1 = 2 and 4, this formula predicts a ratio 
of peak velocity of 14.7, which is in fair agreement with the ratio 15.8 found by the 
initial-value code. We also ran the case w1 = 4 with a vorticity source c = and 
obtained a velocity amplitude ten times larger than in the c = case. We conclude 
that the vorticity sources in the initial-value code give results very similar to those 
of the imperfect amplitude equation. 

We can now proceed to study the development of the flow after the onset. All the 
following results have been obtained by means of the initial-value code described in 
$2, without the source of vorticity mentioned above. We consider a series of 
experiments of Ahlers which were performed at 7 = 0.75 and w1 = 4.0; Ahlers defined 
the Reynolds numbers as 

Rel(t) = Re,,( 1 + eo +&sin (0, t)) ,  1 
Re,(t) = 0, J (4.9) 

so that E ,  is a measure of the distance from the steady onset. The connection to thc 
previous notation (4.1) is that Re, = Re,,(l + e o )  and el = Rel,6/Re,. 

In  a first experiment Ahlers chose E ,  = 0.1 and 6 = 0.4 and measured the axial 
component of the velocity u,(t) at some point close to the inner cylinder as a function 
of time. Then u,(t) was analysed in Fourier modes 

u, = uk’) sin (ac) +up) sin (zag) + ui3) sin ( 3 4 )  . . . , 

where a is the dimensionless axial wavenumber. The results for the first Fourier 
component uP)(t) as a function of time are the circles in figure 7 .  Note that up) is 
normalized by uLi)/e$ where u$,) is the first Fourier component of the velocity u,, 
when there is no modulation. We have calculated u,(t) a t  the point x = 0.1 and 5 = 
0.125h by means of our initial-value program : the result for @(t), normalized in the 
same way as Ahlers, is the solid line of figure 7 :  the agreement with Ahlers’ 
experiment is good. 

We next want to  compare our computation and Ahlers’ data to  the result of the 
direct numerical integration of the amplitude equation. We have already learned 
how to identify y ,  e, w ,  A and c in (3.2) and we have already seen that in Ahlers’ 
experiments at E,, = 0.1 and 7 = 0.75 we have da/dRe = 0.31. At steady Reynolds 
number Re, = Re,,(l +so)  = 94.3539 we find u, = -3.56 at  the test point x = 0.1 and 
5 = 0.125h, which we use for comparison to  experiment. At this value of Re,, A = 
pi = 0 .31(Re l -~ , , , )~  = 1.63, so the value of the constant which connects A to u, via 
A = ku, is k = -0.46 for comparison to this experiment. Finally we assume c = 0 
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FIGURE 7. Comparison with the experiment of Ahlers (1988, private communication) at 7 = 0.75, 
w1 = 4 with F,, = 0.1 and 8 = 0.4. Plot of the first Fourier compopent ul1)(t) us. t /T ,  normalized as 
described in the tex t :  circles, experimental da ta ;  solid curve, result of the  initial-value code with 
a = 3.13, N = 15, M = 6, and N, = 800. 
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FIGURE 8. Comparison between the experimental da ta  of Ahlers of figure 7 and the integration of 
the amplitude equation (3.2) with ,u = 2.6463. E = 10.5854, w = 4 and c = 0. The solution of the 
amplitude equation has been normalized as described in  the text. 
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FIGURE 9. Comparison with the experiment of Ahlers (1988, private communication) at 7 = 0.75 
with eo = 0.1, 8 = 0.7 and o1 = 4. Plot of the first Fourier component ull)(t) VS. t / T ,  normalized as 
described in the text: circles, experimental data; solid curve, result of the initial-value code with 
a = 3.13, N = 15, M = 6 and N ,  = 800. 
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FIGURE 10. Comparison between the experimental data of Ahlers of figure 9 and the integration 
of the amplitude equation (3.2) with ,u = 2.6464, E = 18.5234, w = 4 and c = 0, 0.001, 0.005 and 
0.01; the higher the value of c the earlier the amplitude rises. The solution of the amplitude 
equation has been normalized as described in the text. 
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FIGURE 1 1 .  Comparison with the experiment of Ahlers (1988, private communication) at 7 = 0.75 
with E,, = 0.2, o = 4 and 8 = 0.7.  Plot of the first Fourier component up’(t) vs. t / T ,  normalized as 
described in the text : circles, experimental da ta ;  solid curve, result of the initial-value code with 
01 = 3.13, N =  15, M = 6 and N,  = 800. 

because we do not expect that in Ahlers’ experiment a t  w = 4 the imperfections play 
a role as significant as they did in Walsh & Donnelly’s ( 1 9 8 8 ~ )  experiment where thc 
frequcnoy went down to w = 0.48. We have seen a t  the end of 93 that if ,u > 0 and 
c 4 c+ thc effect of the noise is insignificant : in the case of Ahlers’ first experiment we 
obtain c ,  M 0.12 which is bigger than the typical value c = lW3. The result of the 
numerical integration of the amplitude equation is shown in figure 8 together with 
Ahlers’ measurements : it does reproduce the general feature of the experimental data 
and it fails only to describe the region close to the peak. 

In  a second experiment a t  the same frequency w1 = 4 and radius ratio ‘1 = 0.75 
Ahlers chose the parameters e,, = 0.1 and 6 = 0.7, i.e. the same relative distance from 
the onset of steady vortices but a larger modulation amplitude. The comparison 
between the data and our initial-value code is shown in figure 9. Note how the spike 
which develops at  the maximum of the velocity is well reproduced. However the 
measured signal rises earlier than the calculated signal. We again attribute this 
discrepancy to  the effect of the imperfections in the system. At this larger 6 = 0.7, 
imperfections become more important than in the previous S = 0.4 case : we find that 
e ,  is reduced and is x 0.003 M c = lop3. We have also computed the solution of the 
amplitude equation for increasing values of the imperfection c,  shown in figure 10. 
Although the shape of the curve is not so well reproduced by the amplitude equation 
as by the full code, we see that a non-zero but small value of c is enough to make the 
solution to rise earlier, as in the experimental data. 

In  a third experiment, a t  the same frequency and radius ratio, Ahlers used the 
parameters e0 = 0.2 and 6 = 0.7 : the flow is modulated with the same amplitude but 
is further away from the critical Reynolds number. In  this case we expect the 
modulated vortex to  be more distorted, being driven at higher Reynolds number, 
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FIGURE 12. Plot of the streamlines 11. and modified azimuthal vorticity Z calculated by our initial- 
value code for the case of figure 1 1  ; for the streamlines contours are spaced a t  A+ = Q$,,,. and for 
Z contours are spaced a t  AZ = &,,ax. (a) a t  time t /T  = 0.20 contours of $, $,,, = 0.37. (b) t /T = 
0.20 contours of Z, Z,,, = 29.6. ( c )  t /T  = 0.295 contours of $, $-,,, = 5.63. (d)  t/T = 0.295 contours 
of z, z,,, = 337.3. 

and that the imperfections play a less important role as c+ = 0.01 is bigger than c. 
Figure 11 shows how the experimental data agree with the initial-value code. As we 
expect, the theoretical curve and the data rise at the same point in the cycle, 
confirming that imperfections are not significant in this case. 

It is interesting to study how the flow varies during a cycle: in figure 12 we show 
the streamlines and the lines of equal vorticity at different times during an oscillation 
for Ahlers’ experiment at c0 = 0.2 and S = 0.7: figures 12(a) and 12(b) show the 
streamlines and vorticity at t /T  = 0.2, when the amplitude is small, and 12(c) and 
12 ( d )  give the corresponding pictures at t / T  = 0.295, near maximum amplitude. The 

6 FILM 208 
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FIGURE 13. Plot of luz(t)l  VR. t /T  computed for the case of figure 12, 7 = 0.75, o1 = 4 and 8 = 0.7 
a t  the test point r = 0.1 and 5 = 0.125h, at increasing values of's, = 0.01, 0.025. 0.050, 0.075, 0.10, 
0.15, 0.20 and 0.30. We used N =  15, M =  6 and NT = 800. 

most interesting feature is that  the core of the Taylor vortex moves towards the 
outflow region of the cell pair when the velocity is at the highest value. It is then not 
surprising that, the amplitude equation fails to describe the region close to where u,(t) 
is maximum, because its derivation assumes that the spatial dependence is the same 
during the cycle. The movement of the vortex core also explains why the shape of the 
function u,(t) develops a sharp peak: u,(t) is measured or calculated at a fixed point 
near the inner cylinder in the outflow region ; when the vortex is at the maximum 
strength i t  becomes distortcd in such a way as to increase the value of the velocity 
at that fixed point, an effect that is not reproduced by the amplitude equation. In  
figure 13 we show a series of plots of u,(t) for various values of E" at the same 
6 = 0.7 to show how the peak of u,,(t) develops and becomes distorted. 

If one considers thc value of the average of u2 one finds that this is proportional 
to E ,  at fixed modulation 6, as shown in figure 14: this verifies the Landau amplitude 
law for modulated flow. Note that the curve joining the circles (modulated flow) does 
not pass through the origin because of the threshold shift. Indeed, the threshold shift 
could in principle be measured by finding the intercept a t  u2 = 0: this was the idea 
in Donnelly's (1964) experiment, but unfortunately the presence of the transient 
vortices made it difficult to obtain accurate results by this approach. 

Finally we consider the case in which it is the outer cylinder that  is modulated, the 
subject of an experiment of Walsh & Donnelly (1988b). In the experiment at first the 
outer cylinder was held fixed and the inner cylinder was rotated a t  constant 
Reynolds number Re, = Re, > Re,, so as to produce a steady Taylor-vortex flow. 
Then the experimentalists discovered that if the modulated the outer cylinder at 
Reynolds number Re,(t) = e , E ,  sin (w,  t )  the vortices disappeared and the flow 
returned into the Couette state. The conclusion is that  the modulation of the outer 
cylinder strongly stabilizes the flow, contrary to what happens for modulations of the 



Modulated Taylor-Couette $ow 157 

60 

50 

40 

': 30 

20 

10 

0 

0 

9 

0 

9 
0 

3 

0 

0 3  

o 9  
9 

0 
0 9  

0.1 0.2 0.3 0.4 
€0 

FIGURE 14. Circles, time average of u," calculated by our initial-value code for the case of figure 10 
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FIGURE 15. Comparison witkWalsh & Donnelly's experiment (1988b) a t  = 0.88, c2 = 0.5. We 
plot the threshold shifts 100(Re,, -Re,,) /Ra,,  m. log,, y2 ; bars, experimental points ; solid line, our 
calculations with a = 3.13, N =  15, and N ,  = 1000. 

inner cylinder. Figure 15 shows t,he comparison of our Floquet theory with this 
experiment : we plot threshold shifts as a function of frequency (actually r against 
log,, y z )  a t  eq = 0.5 and 7 = 0.88. The agreement with the experiments is reasonable. 
It is interesting to compare this stabilization with the destabilization shown in the 

6-2 
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solid curve of figure 2 :  recall that  in figure 2 the data for the solid curve were 
multiplied by a factor of 10, so that a t  low frequency r is about, -0.8Y0, whereas 
in figure 17 the change in r a t  low frequency is about 8%. Because the shift is much 
larger when the outer, rather than the inner, cylinder is modulated, the experiment 
is easier and the results in better agreement with the theory. The reason why 
modulation stabilizes in this case is straightforward to understand : Taylor (1923) 
showed that as Q2 is varied at fixed Q1 in the steady-state problem, the marginal 
curve has tt U-shttpc: that is the flow becomes more stable whether 52, is positive or 
negative. We therefore expect this type of modulation to be stabilizing. 

5. Conclusions 
Both the cxperiments and the theory of the primary bifurcation in modulated 

Couette flow have presented a rather confused picture in the past,, but a clearer view 
is beginning to emerge. For modulation of the inner cylinder about a non-zero mean, 
the threshold shift of the critical Reynolds number is quite small, and is close to the 
experimentally observable limit with modern apparatus. The early experiments of 
Donnelly were not sufficiently accurate to find this small effect, and subsequent 
workers have found a negative threshold shift, rather than Donnelly’s positive value. 
There was, however, nothing wrong in principle with Donnelly’s method of 
determining the critical Reynolds number, but the presence of transient vortices due 
to imperfections made it difficult to get accurate results. 

Some of the more recent experiments have apparently erred in the opposite 
direction : negative threshold shifts have been found (corresponding to modulation 
being destabilizing), as predicted by Hall, but their magnitude has been much too 
large, particularly at low frequency. We believe, however, that  the explanation given 
in this paper, namely that small imperfections can give rise to large-amplitude 
vortices below the critical Reynolds number, can account for the discrepancies. 
Experiments with higher frequencies, such as Ahlers’ laser-Doppler observations, are 
in reasonable agreement with the theory, as are the experiments in which the outer 
cylinder is modulated, the threshold shift being then much larger. 

We also believe that an important source of confusion, both for experimentalists 
and theoreticians, has been the nature of the low-frequency limit. The ‘physically 
intuitive’ idea that a t  low frequencies the system must be unstable if the 
instantaneous Reynolds number exceeds the steady critical Reynolds number at  any 
time during the cycle is only true if there are imperfections in the system. In the 
theoretical perfect bifurcation the critical Reynolds number in the low-frequency 
limit is completely different from this physically intuitive value. This behaviour is 
quite common in systems with two small parameters, here the frequency w and the 
degree of imperfection c ; the physically intuitive critical Reynolds number comes 
from first letting w + O  and then letting c + O ,  whereas in the perfect bifurcation 
analysis we first send c + 0 and then let w + 0. The value of Re,, obtained depends on 
the order in which the limits are taken. 

The amplitude equation gives a qualitatively correct description of the behaviour 
near transition, although the full time-step integration procedure gives a much more 
accurate reproduction of the time-dependence of the amplitude : this is because the 
numerical simulation takes into account the changing shape of the vortex pattern 
throughout the cycle. It is also possible to make analytical progress with the 
imperfect amplitude equation and hence to see directly the effect of imperfection on 
the disturbance, and how this depends on the parameters. This makes it possible to 
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develop criteria for the importance of imperfections; criteria that seem to be 
reasonably successful in interpreting the experiments. We have also been able to 
model the imperfections in the initial-value code by including a source of vorticity ; 
a steadily oscillating ‘transient ’ vortex can then be produced at subcritical Reynolds 
number. 

On the theoretical side, our calculations agree with those of Hall and Kuhlmann 
et al. and disagree with those of Carmi & Tustaniwskyj. The most likely source of this 
disagreement has been identified. 

We gratefully acknowledge access to unpublished experimental data from 
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